STRATEGIES FOR MATH PROBLEM SOLVING

* Seven effective MATH instructional practices:

- 1: Teach students using explicit instruction on a regular basis.
- 2: Teach students using multiple instructional examples.
- 3: Have students verbalize decisions and solutions to a math problem.
- 4: Teach students to visually represent the information in the math problem.
- 5: Teach students to solve problems using multiple/ heuristic strategies.
- 6: Provide ongoing formative assessment data and feedback to teachers.
- 7: Provide peer-assisted instruction to students.

***TINS Math Problem Solving Strategy:** Use the acronym TINS to use a step-by-step process for solving math word problems:

T for Thought – Circle key words in the problem, write the operation symbol.

I for Information – Write most important details needed to solve problem.

N for Number Sentence – Write the equation.

S for Solution Sentence – Write the answer in a sentence that answers the question in the problem.

*Five-Point Problem Solving Strategy:

- 1. QUESTION: Understand the question.
- 2. DATA: Find the needed data.
- 3. PLAN: Plan what to do.
- 4. ANSWER: Find the answer.
- 5. CHECK: Check back.

*TACKS Problem-Solving Strategy:

- 1. Organize the information:
 - T What does the problem TELL me?
 - A Prove or defend the ANSWER.
 - C What are the CLUE words?
 - K What KIND of process will I use?
 - S How many STEPS are involved?
- 2. Prove or defend the answer.

* Utilize this step-by-step process as a "Cognitive Strategy" to increase comprehension for math problem solving:

- 1) Read
- 2) Paraphrase
- 3) Visualize
- 4) Hypothesize
- 5) Estimate or predict an outcome
- 6) Compute
- 7) Check

www.mathinterventions.org www.projectachieve.info

* **CONCEPT BASED MATH INSTRUCTION** (Meir Ben-Hur, International Renewal Institute) - The teacher discusses, trains, models and scaffolds instruction to teach students how to think through problems, using following sequential steps:

1. Practice – both quantity and quality – variability, level of challenge, novelty

2. Decontextualization – higher order questions, wait time, encourage diverse responses, analyze errors

3. Meaning - not just "what? but more "how?" and "why?

4. Recontextualization – Where else is it applicable? In which conditions, if any, is it not applicable?

5. Realization – interdisciplinary collaboration (shared goals and activities), schoolcommunity collaboration, parent involvement